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1 Introduction

Disregarding power corrections, hard hadron processes are described in perturbative QCD

in terms of process-dependent short-distance coefficient functions (mass-factorized par-

tonic cross sections) and universal space- and timelike parton densities including non-

perturbative long-distance effects. The separation between the coefficient functions and

the parton densities and the splitting functions governing their scale dependence is, of

course, not unique beyond the leading order (LO) in perturbative QCD. It is usual to per-

form this separation in the modified [1] minimal subtraction [2] scheme, MS, see also ref. [3],

of dimensional regularization [4], the standard framework for higher-order diagrammatic

calculations in quantum field theory.

While this scheme does not provide a physical definition of the parton densities, it does

lead to a stable (order-independent) functional form of the dominant diagonal (quark-quark

and gluon-gluon) splitting functions in the limit of large momentum fractions x [5–10].

This feature assists a stable evolution of the parton densities over a wide range of scales as

required, e.g., for LHC predictions based on data from fixed-target and HERA experiments.

The coefficient functions, on the other hand, receive double logarithmic large-x en-

hancements in the MS scheme, i.e., terms up to (1−x)−1+k ln 2n−a(1−x) occur, for all k,

at the n-th order of the strong coupling constant αs (the offset a ≥ 1 depends on the

observable and the power k in the expansion in 1−x ). The highest leading ( k = 0 )

logarithms can be resummed by the soft-gluon exponentiation [11] which is now known to

the next-to-next-to-next-to-leading logarithmic (N3LL) accuracy for inclusive deep-inelastic

lepton-proton scattering (DIS), lp → l+X [12], Drell-Yan (DY) lepton-pair production and
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Higgs production in proton-proton collisions [13–15], and semi-inclusive electron-positron

annihilation (SIA), e+e− → h + X (h = π, K, . . . ) [16, 17]. On the other hand, recent

studies of the subleading k = 1 logarithms [18, 19] have not led to similarly systematic

predictions for higher-order coefficient functions yet.

An alternative description of hard processes can be obtained by eliminating the parton

densities, leading to physical evolution kernels (also called physical anomalous dimensions)

for the scale dependence of observables [3], see also ref. [20]. This is especially simple for the

flavour non-singlet quantities dominating the large-x limits of the semi-leptonic DIS, SIA

and DY processes mentioned above. The direct relation between different processes via the

universal parton densities is absent in this approach, but the soft-gluon exponentiation [11]

guarantees an only single logarithmic k = 0 higher-order large-x enhancement [21], see

also refs. [22].

Using the coefficient-function results of refs. [23–32] for the above processes, one finds

that the corresponding non-singlet physical kernels exhibit only a single logarithmic en-

hancement for all values of k at least to the next-to-next-to-leading or next-to-next-to-next-

to-leading order (NNLO or N3LO) in the expansion in αs. We are thus led to the rather

obvious conjecture that this behaviour, already established to order α 4
s in DIS, persists to

all orders in αs. The required cancellation of double logarithms in the physical kernels then

implies exponentiations also of terms with k ≥ 1, yielding explicit all-order predictions for

the highest logarithms in the respective quark coefficient functions. In the rest of this arti-

cle we derive and discuss these predictions, emphasizing the subleading k = 1 logarithms.

Especially for this case a formal proof of the exponentiation may be expected in the near

future from the new path-integral approach of ref. [19].

2 Physical evolution kernels for non-singlet observables

We start by recalling the construction and fixed-order properties of the physical evolution

kernels. We first consider the DIS structure functions (see ref. [33] for a general overview)

F1 = 2F1,ns , F2 =
1

x
F2,ns , F3 = F3

ν+ν̄ . (2.1)

The longitudinal structure function FL = F2−2xF1 has been addressed already in ref. [34].

Disregarding terms suppressed by powers of 1/Q2, the non-singlet quantities (2.1) are

given by

Fa(x,Q2) =
[
Ca(Q

2) ⊗ qa,ns(Q
2)
]
(x) =

∑

l=0

a l
s(Q

2)
[
ca,l ⊗ qa,ns(Q

2)
]
(x) . (2.2)

As usual x is the Bjorken variable, and Q2 = −q2 the negative squared four-momentum of

the exchanged gauge boson. ca,l represents the l-loop non-singlet coefficient function for Fa

with ca,0(x) = δ(1−x). The exact three-loop results ca,3(x) for the structure functions (2.1)

have been computed in refs. [26–28]. Beyond this order only the CF n l−1
f leading-nf terms

are exactly known [35, 36]. Furthermore qa,ns denotes the corresponding combination of
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the quark densities (including electroweak charge factors), and ⊗ stands for the standard

Mellin convolution, given by

[a ⊗ b](x) =

∫ 1

x

dy

y
a(y) b

(
x

y

)
(2.3)

for two regular functions and eq. (3.4) of ref. [21] if a +-distribution is involved. The

renormalization and factorization scales µr and µf have been set to the physical hard scale

Q in eq. (2.2).

The scale dependence of the running coupling of QCD, in this article normalized as

as ≡
αs

4π
,

is governed by
das

d ln Q2
= β(as) = −

∑

l=0

a l+2
s βl . (2.4)

Besides the scheme-independent β0 = 11/3 CA − 2/3 nf [37] (with CA = Ncolours = 3

in QCD) and β1 [38], also the coefficients β2 and β3 have been computed [39, 40] in the

MS renormalization scheme adopted throughout this study. All these four coefficients are

required for calculations including the N3LO quantities ca,3. Here and below nf denotes

the number of effectively massless flavours (mass effects are not considered in this article).

Finally the evolution equations for the quark densities in eq. (2.2) read

d

d ln Q2
qa,ns(x,Q2) =

[
Pa(Q

2) ⊗ qa,ns(Q
2)
]
(x)

=
∑

l=0

a l+1
s

[
Pa,l ⊗ qa,ns(Q

2)
]
(x) . (2.5)

As the coefficient functions ca,l , the (l+1)-loop splitting functions Pa,l depend only on x

for the above choice of µr and µf . All three independent third-order (NNLO) non-singlet

splitting functions Pa,2(x) are known from ref. [6].

The convolutions in eqs. (2.2) and (2.5) correspond to simple products of the respective

Mellin transforms given by

aN =

∫ 1

0
dx xN−1a(x) (2.6)

for regular functions such as qa,ns and

aN =

∫ 1

0
dx
(
xN−1 − 1

)
a(x)+ (2.7)

for +-distributions such as the leading large-x contributions to ca,l (x). Hence calculations

involving multiple convolutions as, e.g., in eqs. (2.9) below are best carried out in N -space

where the coefficient functions and splitting functions are expressed in terms of harmonic

sums [41]. We mainly use Form [42] and TForm [43] to manipulate such expressions, to

transform them back to the x-space harmonic polylogarithms [44], see also ref. [24], and to

extract large-x coefficients from the results.

– 3 –



J
H
E
P
1
1
(
2
0
0
9
)
0
9
9

It is convenient, both phenomenologically — for instance for determinations αs — and

theoretically, to express the scaling violations of non-singlet observables in terms of these

observables themselves. This explicitly eliminates any dependence on the factorization

scheme and the associated scale µf , and avoids the non-negligible dependence of the MS-

scheme initial distributions for qa,ns on the perturbative order. The corresponding physical

evolution kernels Ka can be derived for µ 2
r = Q2 by differentiating eq. (2.2) with respect

to Q2 by means of the respective evolution equations (2.4) and (2.5) for as and qa,ns, and

then using the inverse of eq. (2.2) to eliminate qa,ns from the result. This procedure yields

the evolution equations [21]

d

d ln Q2
Fa=

{
Pa(as) + β(as)

dCa(as)

das
⊗ Ca(as)

−1

}
⊗ Fa

≡ Ka ⊗ Fa ≡
∑

l=0

a l+1
s Ka,l ⊗ Fa

=

{
as Pa,0 +

∑

l=1

a l+1
s

(
Pa,l −

l−1∑

k=0

βk c̃a,l−k

)}
⊗ Fa . (2.8)

Notice that in N -space the second term in the first line simply is β(as)d ln Ca(as)/das. Up

to N4LO (terms up to l = 4 included in the sums) the expansion coefficients c̃a,l(x) in the

last line read

c̃a,1 = ca,1

c̃a,2 = 2 ca,2 − c⊗2
a,1

c̃a,3 = 3 ca,3 − 3 ca,2 ⊗ ca,1 + c⊗3
a,1 (2.9)

c̃a,4 = 4 ca,4 − 4 ca,3 ⊗ ca,1 − 2 c⊗2
a,2 + 4 ca,2 ⊗ c⊗2

a,1 − c⊗4
a,1

with f ⊗2 ≡ f ⊗ f etc. The above expressions for Ka,l≥1 are valid for µr = Q, the explicit

generalization to µr 6= Q to this order can be found in eq. (2.9) of ref. [21].

The N3LO physical kernels for the structure functions (2.1) are not completely known

at this point, as the four-loop splitting functions Pa,3(x) contributing to eq. (2.8) have not

been derived so far beyond the small leading-nf contribution [45]. Already the correspond-

ing three-loop splitting functions Pa,2 , however, have only a small impact at x > 10−3,

see figure 7 of ref. [6]. Moreover, the dependence of the non-singlet splitting function on

N and on the specific quark combination is such that a single four-loop moment of any of

them sets the scale for the N3LO contributions outside the small-x region, cf. figure 1 of

ref. [6]. Such a calculation has been presented in ref. [46], and the fourth-order correction

is indeed found to be small. Hence a rough estimate of Pa,3(x), for instance via an N -space

Padé estimate, is sufficient in eq. (2.8) for all practical non-singlet analyses.

The expressions for the transverse, longitudinal and asymmetric fragmentation func-

tions

FT = F h
T,ns , FL = F h

L,ns , FA = F h
A (2.10)

in semi-inclusive e+e− annihilation (see ref. [33] for a general overview), e+e− → γ /Z →

h + X, are completely analogous to those for the corresponding deep-inelastic structure
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functions. The scaling variable in eq. (2.2) now reads x = 2pq/Q2 where q with q2 ≡ Q2 > 0

is the momentum of the virtual gauge boson, and p that of the identified hadron h. The

second-order non-singlet coefficient functions ca,2(x) for these cases have been calculated in

refs. [29], see also ref. [9] where we have derived the corresponding timelike splitting func-

tions Pa,2 for the evolution of the non-singlet fragmentation densities qa,ns of the hadron h.

In these cases we know the three-loop coefficient functions ca,3 , beyond the leading large-x

terms of refs. [16, 17], only up some terms involving ζ2 = π2/6, cf. the hadronic Higgs

decay rate in ref. [10]. These incomplete results have not been published. Their (complete)

highest lnn(1−x) terms will be presented in the next section.

Finally we also consider the non-singlet quark-antiquark annihilation contribution to

the total cross section for Drell-Yan lepton-pair production, pp/pp̄ → l+l− + X,

FDY =
1

σ0

dσns

dQ2
. (2.11)

In a rather schematic (but for our purpose sufficient) manner this quantity can be written as

FDY(x,Q2) =
[
CDY(Q2) ⊗ q(Q2) ⊗ q̄(Q2)

]
(x) . (2.12)

Here Q2 > 0 denotes the squared invariant mass of the lepton pair, and the scaling variable

is given by x = Q2/S where S is the squared CMS energy of the proton – (anti-)proton initial

state. As in the case of deep-inelastic scattering, q(x,Q2) represents the initial-state (space-

like) quark densities of the proton which evolve with the splitting functions of ref. [34]. The

non-singlet quark-antiquark coefficient function has a perturbative expansion analogous to

eq. (2.2) above, with σ0 in eq. (2.11) chosen such that also cDY,0(x) = δ(1−x). The complete

expressions for the NNLO contribution cDY,2(x) have been calculated in refs. [31, 32]. At

N3LO only the leading large-x terms, (1− x)−1 lnn(1− x) with n = 0, . . . , 5, are presently

known from ref. [13], see also ref. [14].

The derivation of the physical evolution kernel for FDY proceeds completely analogous

to the paragraph of eq. (2.8), with the non-singlet quark-quark splitting function occurring

twice instead of once. As we will show in the next section, this modification is irrelevant

for the purpose of this article, the determination of subleading large-x / large-N double

logarithms in the higher-order coefficient functions for the quantities in eqs. (2.1), (2.10)

and (2.11).

3 Known large-x logarithms at the second and third order

We next need to address the expansions in powers of ln (1−x) of the known non-singlet

splitting functions [6, 9, 47, 48] and coefficient functions [23–32] in the MS scheme. The

spacelike splitting functions (2.5) for all three types of non-singlet combinations of quark

densities,

q
(ik)
±,ns = qi ± q̄i − (qk ± q̄k) , qv,ns =

∑nf

r=1 (qr − q̄r) , (3.1)

are given by

Pa,l(x) =
Al+1

(1−x)+
+ B̃l+1 δ(1−x) + C̃l+1 ln (1−x) + O

(
(1−x)k ≥1 ln l(1−x)

)
. (3.2)
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The last term indicates that the (l+1)-loop splitting functions Pa,l(x) receive contributions

from terms no higher than ln l(1−x), and that these contributions occur at all orders in

(1−x) from the first. It is interesting to note that the new colour structure dabcdabc en-

tering the valence splitting function Pv at three loops contributes only non-leading terms

(1−x)k≥1 ln (1−x), in striking contrast to its dominance in the small-x limit [6]. As in-

dicated the first three terms in eq. (3.2) are the same for all three splitting functions Pa

— with the non-vanishing ( l > 0) coefficients C̃l+1 being combinations of lower-order cusp

anomalous dimensions An≤l — and their functional form is independent on the perturba-

tive order l. This independence is established to all orders in ref. [5] for the first two terms,

and strongly suggested for the third term by the conjecture of ref. [8] and its third-order

verification in refs. [9, 10], see also ref. [49].

Eq. (3.2) also holds for the corresponding timelike splitting functions [9, 48] governing

the evolution of the non-singlet fragmentation densities, with the same large-x coefficients

except for a sign change of C̃ relative to the spacelike case [8]. Hence it appears that none

of the non-singlet splitting functions exhibits any large-x double logarithms at any order

of (1−x).

The known coefficient functions for the deep-inelastic structure functions (2.1) and

the fragmentation functions (2.10) – with the obvious exception of FL — receive the same

highest double logarithmic contributions,

ca,l(x) =
1

(l − 1)!
(2CF )l pqq(x) ln 2l−1(1−x) + O

(
(1−x)k≥−1 ln 2l−2(1−x)

)
(3.3)

with

pqq(x) =
2

(1−x)+
− 2 + (1−x) (3.4)

and CF = (2Nc)
−1 (N 2

c − 1) = 4/3 in QCD. Eq. (3.3) conforms to the general obser-

vation, going back to ref. [50], that the coefficient of the highest (1−x)0 logarithm is the

negative of that of the highest +-distribution. Actually, this pattern also applies to the

C l−1
F {CA, nf} ln 2l−2(1−x) and C l−2

F {C2
A, CAnf , n2

f} ln 2l−3(1−x) terms to l = 3, see

refs. [27, 28]. Analogous results, e.g.,

cDY,l(x) =
1

(l − 1)!
(8CF )l pqq(x) ln 2l−1(1−x) + O

(
(1−x)k ≥−1 ln 2l−2(1−x)

)
(3.5)

hold for the Drell-Yan cross section (2.11).

For the convenience of the reader, we now proceed to provide the full lnn(1 − x)

contributions to all known coefficient functions as far as they are relevant for our main

predictions in later sections. The coefficient functions (2.2) for F1 read

c1,1(x) = ln (1−x) 2CF pqq(x)

+CF {pqq(x) (−3/2 − 2H0) − δ(1−x) (9 + 4ζ2) + 3 + 3/2 (1−x)} , (3.6)

c1,2(x) =
(
ln 3(1−x) 4C2

F − ln 2(1−x) CF β0

)
pqq(x)

+ ln 2(1−x)
[
C2

F {pqq(x) (−9 − 14H0) + 6 + 4H0 − (1−x)(1 + 2H0)}
]

+ ln (1−x)
[
C2

F

{
pqq(x) (−27/2 − 4 H̃1,0 + 24H0,0 + 12H0 − 16 ζ2) + 8 H̃1,0

– 6 –



J
H
E
P
1
1
(
2
0
0
9
)
0
9
9

−11 − 16H0,0 − 32H0 + (1−x)(−53/2 − 4H̃1,0 + 8H0,0 + 12H0 + 8 ζ2)
}

+CF β0 {pqq(x) (29/6 + 4H0) − 3 + 5/2 (1−x)}

+CF CA

{
pqq(x) (8/3 + 4 H̃1,0 + 4H0,0 − 4 ζ2) + 2 + (1−x)(14 − 4 ζ2)

}

+CF (CA − 2CF ) pqq(−x) (8 H̃−1,0 − 4H0,0)
]

+O
(
ln 0(1−x)

)
, (3.7)

c1,3(x) =
(
ln 5(1−x) 4C3

F − ln 4(1−x) 10/3 C2
F β0 + ln 3(1−x) 2/3 CF β2

0

)
pqq(x)

+ ln 4(1−x)
[
C3

F {pqq(x) (−15 − 24H0) + 6 + 8H0 − (1−x)(5 + 4H0)}
]

+ ln 3 (1−x)
[
C3

F

{
pqq(x) (−18 − 8 H̃1,0 + 296/3 H0,0 + 54H0 − 48 ζ2) + 32 H̃1,0

−22 − 64H0,0 − 84H0 − (1−x)(33 + 16 H̃1,0 − 32H0,0 − 54H0 − 16 ζ2)
}

+C2
F β0 {pqq(x) (70/3 + 164/9H0) − 8 − 4H0 + (1−x)(8 + 2H0)}

+C2
F CA

{
pqq(x) (32/3 + 8 H̃1,0 + 8H0,0 − 16 ζ2) + 4 + (1−x)(28 − 8 ζ2)

}

+C2
F (CA − 2CF ) pqq(−x) (16 H̃−1,0 − 8H0,0)

]

+O
(
ln 2(1−x)

)
. (3.8)

Here and below we suppress the argument x of the harmonic polylogarithms [44] for

brevity. Furthermore we use a slightly non-standard set of basis functions, i.e., eqs. (3.7)

and (3.8) include

H̃1,0(x) = H1,0(x) + ζ2 = − ln x ln (1−x) − Li2(x) + ζ2 ,

H̃−1,0(x) = H−1,0(x) + ζ2/2 = ln x ln(1+x) + Li2(−x) + ζ2/2

besides H0(x) = lnx and H0,0(x) = 1/2 ln 2x. All (modified) H-functions employed in our

equations have a Taylor expansion at x = 1, starting at order (1−x) or higher, with ratio-

nal coefficients. Thus also all terms with the Riemann ζ-function can be read off directly

from our expansions.

The corresponding results for the structure function F2 in (2.1) are given by

c2,1(x) = c1,1(x) + 4x CF (3.9)

c2,2(x) = c1,2(x) + ln 2(1−x) 8x C2
F

+ ln (1−x)
[
C2

F {8−x (4+24H0)}−4xCF β0−CF (CA−2CF )16x (1−ζ2)
]

+C2
F

{
12 − 8H0 − (130/3 + 8 H̃1,0 − 16H0,0 + 16 ζ2) x

}

−CF β0 {4 − (50/3 + 8H0) x}

+CF (CA−2CF )
{
−32/(5x 2) (H̃−1,0 − ζ2/2) − 32/(5x) (1 − H0)

+8/5 − 32 H̃−1,0 − 16/5 H0 + 16 ζ2 + x (236/15 + 16 [2 H̃−1,−1,0

−H̃−1,0,0 + H̃1,0,0 − H̃−1,0 + H0,0] + 104/5H0 − 8 ζ2 − 24 ζ3)

−48/5 x 2(1 + H0) + 48/5 x 3(H̃−1,0 − H0,0 + ζ2/2)
}

, (3.10)

c2,3(x) = c1,3(x) + ln 4(1−x) 8x C3
F

– 7 –
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+ ln 3 (1−x)
[
C3

F {16−x(8+48H0)}−32/3xC2
F β0−C2

F (CA−2CF )32x(1−ζ2)
]

+ ln 2 (1−x)

[
C3

F

{
16 − 48H0 − (166/3 + 32 H̃1,0 − 160H0,0 − 24H0 + 96 ζ2) x

}

−C2
F β0 {20 − (158/3 + 52H0) x} + CF β 2

0 4x

+C2
F (CA−2CF )

{
−64/(5x 2) (H̃−1,0 − ζ2/2) − 64/(5x) (1 − H0)

−144/5 − 64 H̃−1,0 − 32/5 H0 + 64 ζ2 + x (872/15 + 32 [2 H̃−1,−1,0

−H̃−1,0,0 + H̃1,0,0 − H̃−1,0 + H0,0] + 688/5H0 − 48 ζ2 − 96 ζ2 H0 − 48 ζ3)

−96/5 x 2(1 + H0) + 96/5 x 3(H̃−1,0 − H0,0 + ζ2/2)
}

+CF (CA−2CF )β0 24x (1 − ζ2) + CF (CA−2CF )2 32x (ζ2 − ζ3)

]

+O(ln (1−x)) . (3.11)

The differences c2,l − c1,l are, of course, the coefficient functions for the longitudinal struc-

ture function in DIS. Hence we have included one more order in ln (1−x) in eqs. (3.10)

and (3.11). This order additionally includes a combination of three weight-three harmonic

polylogarithms,

H̃−1,−1,0(x) = H−1,−1,0(x) + H−1(x) ζ2/2 − ζ3/8 ,

H̃−1,0,0(x) = H−1,0,0(x) − 3 ζ3/4 ,

H̃1,0,0(x) = H1,0,0(x) − ζ3

besides the unmodified H0,0,0(x) = 1/6 ln 3x. The reader is referred to ref. [24] for expres-

sions of these functions in terms of the standard polylogarithms Li2(x) and Li3(x).

To the same accuracy as eqs. (3.6)–(3.8) for F1, the coefficient functions for F3 can be

written as

c3,1(x) = c1,1(x) − 2CF (1−x) (3.12)

c3,2(x) = c1,2(x) − ln 2 (1−x) 4C2
F (1−x)

+ ln (1−x)
[
C2

F {−32H0 + (1−x)(18 + 28H0 − 16 ζ2)}

+2CF β0 (1−x) + CF CA {16H0 − 8 (1−x)(1 + H0 − ζ2)}

−CF (CA − 2CF ) 8 pqq(−x) (2 H̃−1,0 − H0,0)
]

+O
(
ln 0(1−x)

)
, (3.13)

c3,3(x) = c1,3(x) − ln 4 (1−x) 4C3
F (1−x)

+ ln 3 (1−x)
[
C3

F {−64H0 + (1−x)(36 + 56H0 − 32 ζ2)}

+16/3 C2
F β0 (1−x) + C2

F CA {32H0 − 16 (1−x)(1 + H0 − ζ2)}

−C2
F (CA − 2CF ) 16 pqq(−x) (2 H̃−1,0 − H0,0)

]

+O
(
ln 2(1−x)

)
. (3.14)

As mentioned below eq. (3.8), the H-functions in our expansions start at order (1−x) or

higher at large x. Hence one can directly read off from eqs. (3.12)–(3.14) that the coefficient
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functions for F1 and F3 differ for x → 1 only in terms of order (1−x). This fact was already

noted in ref. [28].

The third-order coefficient functions (3.8), (3.11) and (3.14) receive contributions

from new flavour classes involving the higher group invariant dabcdabc [26–28]. The high-

est dabcdabc terms behave as (1−x) ln (1−x) for F1 and F2, and as (1−x) ln 2(1−x)

for F3. Their leading contributions for the longitudinal structure function is of order

(1−x)2 ln (1−x). These terms will not be relevant on the level of our present analysis. The

same holds for the new three-loop functions gi(x) which also show only a single-logarithmic

behaviour for x → 1 [27, 28].

The coefficient functions for the transverse fragmentation function FT are related to

those for F1 in DIS by suitably defined analytic continuations. Hence we also present their

ln (1−x) expansions relative to the results for c1,l(x) in eqs. (3.6)–(3.8):

cT,1(x) = c1,1(x) + CF {12 ζ2 δ(1−x) + 6 pqq(x)H0 − 6 + 3 (1−x)} , (3.15)

cT,2(x) = c1,2(x) + ln 2 (1−x) C2
F {24 pqq(x)H0 − 12 + 6 (1−x)}

+ ln (1−x)
[
C2

F

{
pqq(x) (8 H̃1,0 − 28H0,0 − 18H0 + 24 ζ2)

+22 + 40H0,0 + 12H0 − (1−x)(11 + 20H0,0 + 10H0)}

+CF β0 {−6 pqq(x)H0 + 6 − 3 (1−x)}

+CF CA

{
pqq(x) (−8 H̃1,0 − 4H0,0) − 4 + 2 (1−x)

}]

+O
(
ln 0(1−x)

)
, (3.16)

cT,3(x) = c1,3(x) + ln 4 (1−x) C3
F {36 pqq(x)H0 − 12 + 6 (1−x)}

+ ln 3 (1−x)
[
C3

F

{
pqq(x) (16 H̃1,0 − 104H0,0 − 72H0 + 48 ζ2)

+44 + 128H0,0 + 24H0 − (1−x)(22 + 64H0,0 + 44H0)}

+C2
F β0 {−232/9 pqq(x)H0 + 16 − 8 (1−x)}

+C2
F CA

{
pqq(x) (−16 H̃1,0 − 8H0,0) − 8 + 4 (1−x)

}]

+O
(
ln 2(1−x)

)
. (3.17)

As for the spacelike case of eqs. (3.9)–(3.11), also the coefficient functions for the time-

like longitudinal structure function FL in eq. (2.10) will be needed to one more order in

ln (1−x) below. Their corresponding expansions are given by

cL,1(x) = 2CF , (3.18)

cL,2(x) = ln 2 (1−x) 4C2
F

+ ln (1−x)
[
C2

F {−2 + 4H0 + 4x} − 2CF β0 − 8CF (CA−2CF )(1 − ζ2)
]

+C2
F

{
−41/3 − 12 H̃1,0 − 12H0,0 + 2H0 + 16 ζ2 − x (2 − 8H0)

}

+CF β0 {25/3 − 2H0 − 2x}

+CF (CA−2CF )
{
−24/(5x 2) (H̃−1,0 − ζ2/2) − 24/(5x) (1 − H0) + 118/15

−8[2 H̃−1,−1,0 − H̃−1,0,0 − 2 H̃0,−1,0 − H̃1,0,0 − H̃−1,0] − 12/5 H0
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−4 ζ2 − 8 ζ2 H0 − 12 ζ3 + x (4/5 + 16 H̃−1,0 − 16H0,0 + 8/5H0 + 8 ζ2)

−16/5 x 2(1 + H0) + 16/5 x 3(H̃−1,0 − H0,0 + ζ2/2)
}

, (3.19)

cL,3(x) = ln 4 (1−x) 4C3
F

+ ln 3 (1−x)
[
C3

F {−4 + 8H0 + 8x} − 16/3 C2
F β0 − 16C2

F (CA−2CF )(1 − ζ2)
]

+ ln 2 (1−x)

[
C3

F

{
−35/3 − 16 H̃1,0 − 16H0,0 − x (8 − 16H0)

}

+C2
F β0 {79/3 − 10H0 − 10x}

+ C2
F (CA−2CF )

{
−48/(5x 2) (H̃−1,0 − ζ2/2) − 48/(5x) (1 − H0) + 436/15

−16[2 H̃−1,−1,0 − H̃−1,0,0 − 2 H̃0,−1,0 − H̃1,0,0 − H̃−1,0] − 104/5 H0

−24 ζ2 − 24 ζ3 + x (−72/5 + 32 H̃−1,0 − 32H0,0 + 16/5H0 + 32 ζ2)

−32/5 x 2(1 + H0) + 32/5 x 3(H̃−1,0 − H0,0 + ζ2/2)
}

+2CF β 2
0 + CF (CA−2CF )β0 12 (1 − ζ2) + CF (CA−2CF )2 16 (ζ2 − ζ3)

]

+O(ln (1−x)) . (3.20)

The last two equations include one more modified harmonic polylogarithm,

H̃0,−1,0(x) = H0,−1,0(x) + H0(x) ζ2/2 + 3 ζ3/2 .

The final observable in eq. (2.10), the asymmetric fragmentation function FA, is anal-

ogous to the structure function F3 in DIS. The αs-expansion (2.2) of its coefficient func-

tion reads

cA,1(x) = cT,1(x) − 2CF (1−x) , (3.21)

cA,2(x) = cT,2(x) − ln 2 (1−x) 4C2
F (1−x)

+ ln (1−x)
[
C2

F {−32H0 + (1−x)(18 + 12H0 − 16 ζ2)}

+2CF β0 (1−x) + CF CA {16H0 − 8 (1−x)(1 + H0 − ζ2)}

−CF (CA − 2CF ) 8 pqq(−x) (2 H̃−1,0 − H0,0)
]

+O
(
ln 0(1−x)

)
, (3.22)

cA,3(x) = cT,3(x) − ln 4 (1−x) 4C3
F (1−x)

+ ln 3 (1−x)
[
C3

F {−64H0 + (1−x)(36 + 24H0 − 32 ζ2)}

+16/3 C2
F β0 (1−x) + C2

F CA {32H0 − 16 (1−x)(1 + H0 − ζ2)}

−C2
F (CA − 2CF ) 16 pqq(−x) (2 H̃−1,0 − H0,0)

]

+O
(
ln 2(1−x)

)
. (3.23)

The relations (3.17), (3.20) and (3.23) for the third-order timelike coefficient functions have

not been presented before. These results have been obtained by extending the analytic con-

tinuations of ref. [9] to terms of order α 3
s ǫ 0 in dimensional regularization. At the end of

this section we will present sufficient evidence that, for these ln (1−x) contributions, this

analytic continuation does not suffer from the π2-problem mentioned below eq. (2.10).
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Finally the known coefficient functions for the Drell-Yan cross section (2.11) are given

by

cDY,1(x) = ln (1−x) 8CF pqq(x) + CF {−4 pqq(x)H0 − δ(1−x) (16 − 8 ζ2)} , (3.24)

cDY,2(x) =
(
ln 3 (1−x) 64C2

F − 8 ln 2 (1−x) CF β0

)
pqq(x)

+ ln 2 (1−x)
[
C2

F {−124 pqq(x)H0 + 64H0 − (1−x)(64 + 32H0)}
]

+ ln (1−x)
[
C2

F

{
pqq(x) (−128 − 8 H̃1,0 + 112H0,0 − 24H0 − 64 ζ2) − 4

+96 [H̃1,0 − H0,0] − 160H0 + (1−x)(4 − 48 H̃1,0 + 48H0,0 + 168H0)
}

+CF β0 {pqq(x) (40/3 + 16H0) + 16 (1−x)}

+CF CA

{
pqq(x) (32/3 + 8 H̃1,0 + 16H0,0 − 16 ζ2) + 4 + 16 H̃1,0

+32H0 + (1−x)(44 − 8 H̃1,0 − 16H0)
}]

+O
(
ln 0(1−x)

)
. (3.25)

At the third order only the +-distributions contributions [ (1−x)−1 lnn(1−x) ]+, n =

0, . . . , 5 are known so far, see ref. [13].

Eqs. (3.6)–(3.23) can be employed to derive the ln (1−x) expansion of the physical

evolution kernels (2.8) for the deep-inelastic structure functions (2.1) and the e+e− frag-

mentation functions FT , FT + FL and FA of eq. (2.10). Recalling that Ka,n denotes the

NnLO kernel for Fa, one finds

Ka,0(x) = 2CF pqq(x) + 3CF δ(1−x) ,

Ka,1(x) = ln (1−x) pqq(x)
[
−2CF β0 ∓ 8C2

F H0

]
+ O

(
ln 0(1−x)

)
,

Ka,2(x) = ln 2 (1−x) pqq(x)
[
2CF β 2

0 ± 12C2
F β0 H0 + 32C3

F H0,0

]
+ O(ln (1−x)) ,

Ka,3(x) = ln 3 (1−x) pqq(x)
[
−2CF β 3

0 ∓ 44/3 C2
F β 2

0 H0 − 64C3
F β0 H0,0 + ξP3

C4
F H0,0,0

]

+ O
(
ln 2(1−x)

)
. (3.26)

From the NLO result Ka,1 we have only written down the leading ln (1−x) terms. These

contributions are the same for all six structure functions up to a sign change of the H0

terms between the DIS quantities (upper sign) and the fragmentation functions (lower sign).

The non-β0 terms in eqs. (3.26) are the contributions of the MS splitting functions (3.2),

consequently the fourth-order coefficient ξP3
is unknown at this point, but irrelevant for

our further considerations.

The corresponding results for the Drell-Yan cross section (2.11) are given by

KDY,0(x) = 4CF pqq(x) + 6CF δ(1−x) ,

KDY,1(x) = ln (1−x) pqq(x)
[
−8CF β0 − 16C2

F H0

]
+ O

(
ln 0(1−x)

)
, (3.27)

KDY,2(x) = ln 2 (1−x) pqq(x)
[
16CF β 2

0 + 56C2
F β0 H0 + 64C3

F H0,0

]
+ O(ln (1−x)) .

Eqs. (3.26) and (3.27) represent our crucial observation: the physical kernels for all

seven non-singlet observables display an only single-logarithmic large-x enhancement, at

all powers of (1−x), to all orders in αs for which the corresponding coefficient functions
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are known. We consider it extremely unlikely that this pattern is accidental, and hence

conjecture a single-logarithmic behaviour of these physical at (all) higher orders in αs, with

the leading contribution showing the same independence on the specific structure function

as in eqs. (3.26). In support of this conjecture we note that for the +-distribution parts of

Ka,n (including the Drell-Yan case), recall eq. (3.4), this single-logarithmic enhancement is

established by the soft-gluon exponentiation as explained in the next section. Furthermore

the all-order leading-nf results of ref. [36] prove the all-order generalization of eqs. (3.26)

for the CF β n
0 contributions to the DIS kernels K1,n and K2,n.

The single-logarithmic enhancement of the physical kernels directly leads to predictions

for the highest ln (1−x) terms of the higher-order coefficient functions. Considering, for

example, the third (N3LO) line of eqs. (2.9), one notes that the convolutions of ca,1(x) and

ca,2(x) lead to terms up to ln 5(1−x). The vanishing of terms higher than ln 3 (1−x) thus

fixes the ln 4(1−x) and ln 5(1−x) terms of ca,3(x). In fact, exactly this reasoning, together

with the absence of any ζ2 terms in eqs. (3.26), provides the additional confirmation of the

correctness of eqs. (3.17), (3.20) and (3.23) mentioned below the latter equation.

4 Soft-gluon exponentiation of the leading contributions

The leading (+-distribution) large-x terms of the above coefficient functions can be ex-

pressed to all orders in αs in terms of the soft-gluon exponentiation [11]. Switching to the

Mellin moments defined in eq. (2.7), these contributions to eq. (2.2) can be written as

C(N) = g0(as) exp
{

lnN g1(λ) + g2(λ) + as g3(λ) + O(a 2
s f(λ))

}
(4.1)

up to terms which vanish for N →∞. Here we have used the standard abbreviation

λ = asβ0L ≡
αs

4π
β0L with L ≡ ln N , (4.2)

and we have again put µr = µf = Q. By virtue of the first line of eq. (2.8) — the

logarithmic derivative in N -space — eq. (4.1) leads to the following expression for the

resummed kernels up to next-to-next-to-leading logarithmic (NNLL) accuracy [21]:

Ka(N) = − ηa

(
A1 as + A2 a 2

s + A3 a 3
s

)
ln N −

(
1 +

β1

β0
as +

β2

β0
a 2

s

)
λ2 dga,1

dλ

−
(
asβ0 + a 2

s β1

)
λ

dga,2

dλ
− a 2

s β0
d

dλ

(
λga,3(λ)

)
+ O(a3

s(f(λ)) (4.3)

with ηa = 2 for a = DY and ηa = 1 otherwise, cf. the last paragraph of section 2. Thus

the leading logarithmic (LL), next-to-leading logarithmic (NLL) and NNLL large-N con-

tributions to the physical kernels are of the form (as ln N)n, as(as ln N)n and a2
s(as ln N)n,

respectively. Recalling

f(N) =
(−1)n

n
lnn N + O(lnn−2 N) for f(x) =

[
lnn−1(1−x)

1 − x

]

+

,

one notes that eq. (4.3) implies that the single-logarithmic enhancement (3.26) and (3.27)

holds to all order in αs for the +-distribution contributions.
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In the next two sections we will provide analogous all-order results for the sublead-

ing N−1 lnn N contributions to the coefficient functions. These results, however, will be

restricted to a tower-expanded NLL accuracy, see ref. [51]. The exponents analogous to

eq. (4.1) will be given relative to the LL and NLL functions entering the soft-gluon ex-

ponent. For the deep-inelastic structure functions F1, 2, 3 and the fragmentation functions

FT+L, T, A these functions read

ga,1(asL) =
A1

β0λ

[
λ + (1 − λ) ln(1 − λ)

]
≡

∑

k=1

g1k(asL)k

=

∞∑

k=1

A1β
k−1
0

k(k + 1)
(asL)k , (4.4)

ga,2(asL) = −
γe A1 − B1

β0
ln(1 − λ) −

A2

β2
0

[
λ + ln(1 − λ)

]

+
A1β1

β3
0

[
λ + ln(1 − λ) +

1

2
ln2(1 − λ)

]
≡
∑

k=1

g2k(asL)k

=
∞∑

k=1

{
γe A1 − B1

β0
+ θk2

(
A2

β2
0

+
A1β1

β3
0

[
S1(k − 1) − 1

])} β k
0

k
(asL)k (4.5)

with θkj = 1 for k ≥ j and θkj = 0 else, and S1(k) =
∑k

j=1 1/j [51]. Here A1 and A2

are the one- and two-loop +-distribution coefficients in eq. (3.2), given by [52]

A1 = 4CF , A2 = 8CF K = 8CF

[(
67

18
− ζ2

)
CA −

5

9
nf

]
. (4.6)

Note that, besides these expansion coefficients and those of the beta function (2.4), only

one additional coefficient,

B1 = −3CF (4.7)

enters the function ga,2 in eq. (4.5) [11]. This pattern does persist at higher orders of

the exponentiation [22, 25]. Consequently the functions gn>1 are completely fixed by the

first term of their respective expansion in αs, if the cusp anomalous dimension and the

beta function are known to a sufficient accuracy. To a large extent the predictive power

of the soft-gluon exponentiation rests on this fact: the calculation of the NnLO coefficient

function is sufficient to also determine the NnLL resummation function gn+1, and thus

two additional all-order towers of logarithms, see, e.g., ref. [12]. As we will see below,

however, this situation does not directly generalize to the non-leading large-x/ large-N

terms addressed in the next two sections.

The LL and NLL resummation exponents for the Drell-Yan cross section (2.11) are

related to eqs. (4.4) and (4.5) as follows:

gDY,1(λ) = 2 gDIS,1(2λ) ,

gDY,2(λ) = gDIS,2(2λ) with B1 → 0 and γe → 2 γe . (4.8)

Here, as above, γe ≃ 0.577216 denotes the Euler-Mascheroni constant. The absence of

any NLL resummation coefficient additional to A1 and β1 is a low-order ‘accident’, non-

vanishing coefficients DDY,n occur at NNLL [53] and all higher orders.
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For later convenience we finally recall the leading contributions g31, defined as for

g1 and g2 in eqs. (4.4) and (4.5), to the NNLL resummation function in eq. (4.1). The

universal coefficient for DIS and e+e− annihilation, first extracted in ref. [51] from the

NNLO result of refs. [23], reads

ga,31 =

(
3155

54
−

22

3
ζ2 − 40 ζ3 − 8 ζ2 γe +

22

3
γ 2
e +

367

9
γe

)
CF CA

+

(
3

2
− 12 ζ2 + 24 ζ3

)
C2

F −

(
247

27
−

4

3
ζ2 +

4

3
γ 2
e +

58

9
γe

)
CF nf . (4.9)

The corresponding result for the Drell-Yan case [31, 53] is given by

gDY,31 =

(
1616

27
− 56 ζ3 − 32 ζ2 γe +

176

3
γ 2
e +

1072

9
γe

)
CF CA

−

(
224

27
+

32

3
γ 2
e +

160

9
γe

)
CF nf . (4.10)

Having collected all relevant fixed-order and soft-gluon resummation information, we can

now turn to our new higher-order predictions.

5 Non-leading large-N/ large-x terms in structure functions

Keeping only the leading and subleading contributions, the large-N behaviour of the coef-

ficient functions (2.2) for the structure functions Fa in eq. (2.1) can be written as

ca,n(N) =

2n∑

k=0

cnk Lk +
1

N

2n−1∑

k=0

d
(n)
a, k Lk + O

(
1

N 2
L2n−1

)
(5.1)

with, as in the previous section, L ≡ ln N . At the present accuracy the leading soft-gluon

coefficients do not depend on the structure function, thus we have written cnk instead of

c
(n)
a, k . C1 and C3 are identical at the level of eq. (5.1) as discussed below eq. (3.14) —

recall that N−2 ln a N corresponds to (1−x) ln a(1−x). Note that the second sum extends

to 2n− 1, i.e., higher by one than the corresponding expansion for FL analysed in ref. [34].

Thus the highest coefficients d
(n)
a, 2n−1 at each order n are identical also for C1 and C2. Recall

that also the leading logarithms of the physical evolution kernels (3.26) to N 3LO are the

same for a = 1, 2, 3. Their 1/N contributions are

K a,1

∣∣∣
N−1L

= − 2β0 CF − 16C2
F ,

K a,2

∣∣∣
N−1L2

= − 2β 2
0 CF − 24β0 C2

F ,

K a,3

∣∣∣
N−1L3

= − 2β 3
0 CF −

88

3
β 2

0 C2
F . (5.2)

As discussed at the end of section 3, the vanishing of higher than single-enhanced

logarithms in K a,n leads to relations between coefficient-function coefficients at different

orders. For the two highest terms at all orders one finds

d
(n)
a, 2n−1 = d

(1)
a, 1

cn−1
12

(n − 1)!
≡ d11

cn−1
12

(n − 1)!
, (5.3)
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d
(n)
a, 2n−2 = d11 {c23 − c12c11}

θn3 cn−3
12

(n − 3)!
+
{

d
(2)
a,2 − d

(1)
a,0 c12

} θn2 cn−2
12

(n − 2)!
+ d

(1)
a,0

cn−1
12

(n − 1)!

= d11

{
h12

θn3 cn−3
12

(n − 3)!
+ h21

θn2 cn−2
12

(n − 2)!

}
+ d

(1)
a,0

cn−1
12

(n − 1)!
. (5.4)

d
(1)
a,1 is independent of a, as noted above, hence we denote this coefficient by d11 below. θkl

in (5.4) has been defined below eq. (4.5), and the coefficients h12 and h21 in the last line

are given by

h12 = c23 − c12c11 =
1

3
β0 c12 ,

d11 h21 = d
(2)
a,2 − d

(1)
a,0 c12 . (5.5)

Here the second identity in the first line arises from the soft-gluon exponentiation (4.1)

together with the LL and NLL expansions (4.4) and (4.5).

A comparison with the tower-expansion [51] of the soft-gluon resummation reveals that

also eqs. (5.3) and (5.4) correspond to an exponential structure which can be written as

Ca(N) − Ca

∣∣∣
N 0 Lk

=

=
1

N

([
d11L+d

(1)
a,0

]
as+

[
d̃

(2)

a,1 L+d
(2)
a,0

]
a 2

s +. . .
)

exp {Lh1(asL)+h2(asL)+· · · } , (5.6)

where also the functions hk are defined in terms of a power expansion,

hk(asL) ≡
∑

k=1

hkn (asL)n . (5.7)

Notice that d̃
(2)

a,1 in eq. (5.6) is not identical to d
(2)
a,1 in eq. (5.1) — the latter quantity

receives a contribution from the expansion of the exponential. In this notation the third

tower of logarithms is given by

d
(n)
a, 2n−3 = d11

{
θn3 hn−3

11

(n − 3)!

(
h22 +

1

2
h 2

21

)
+

θn4 hn−4
11

(n − 4)!

(
h13 + h12h21

)
+

θn5 g n−5
11

2(n − 5)!
h 2

12

}

+ d
(1)
a,0

{
θn2 hn−2

11

(n − 2)!
h21 +

θn3 hn−3
11

(n − 3)!
h12

}
+ d̃

(2)

a,1

θn2 hn−2
11

(n − 2)!
(5.8)

with h11 = c12 = 2CF .

The new coefficient hkn entering eq. (5.8) (and its lower-logarithmic generalizations)

can be determined iteratively from fixed-order information. The exponentiation (5.6) then

ensures the vanishing of the third-highest (and lower) double-logarithmic contributions to

the physical kernel at all orders in αs. Consequently the conjectured single-logarithmic

large-x enhancement of the physical kernel is equivalent to an exponentiation in Mellin

space beyond the leading N 0Lk contributions.

All coefficients entering eqs. (5.3), (5.4) and (5.8) can be determined from present

information. The corresponding coefficients of the exponent turn out to be the same for

F1 and F2. They read

h1k = g1k for k = 1, 2, 3 , (5.9)
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h21 = g21 +
1

2
β0 + 6CF , (5.10)

h22 = g22 +
5

24
β2

0 +
17

9
β0 CF − 18C2

F . (5.11)

We conclude that the 1/N leading-logarithmic function h1(asL) for DIS is identical to

its soft-gluon counterpart (4.4). The function h2(asL), on the other hand, receives addi-

tional contributions which, it appears, prevent direct predictions of g23 etc from eqs. (5.10)

and (5.11). This situation is analogous to that for FL found in ref. [34]. Hence also here

the present predictivity of the exponentiation is restricted to the three highest logarithms

at all higher orders in αs.

The prefactor functions in eq. (5.6) required to this accuracy are given by the coefficient

d11 = 2CF , (5.12)

and for F1 — and F3 , recall the discussion below eq. (5.1) — by

d
(1)
1,0 =

13

2
CF + 2 γe CF (5.13)

d̃
(2)

1,1 = − C2
F

(
47 + 4 ζ2 − 18 γe − 4 γ 2

e

)
+ CF CA

(
1133

36
− 4 ζ2 +

11

3
γe

)

−CF nf

(
127

18
+

2

3
γe

)
. (5.14)

The corresponding coefficients for F2 read

d
(1)
2,0 =

21

2
CF + 2 γe CF (5.15)

d̃
(2)

2,1 = − C2
F

(
119 − 28 ζ2 − 18 γe − 4 γ 2

e

)
+ CF CA

(
1973

36
− 20 ζ2 +

11

3
γe

)

− CF nf

(
151

18
+

2

3
γe

)
. (5.16)

Insertion of eqs. (5.9)–(5.16) into eqs. (5.3), (5.4) and (5.8) provides explicit formulae

for the coefficients of the three highest 1/N logarithms in eq. (5.1) at all orders in αs. For

brevity, we here only present the fourth-order results, Mellin-inverted back to x-space. For

F1 one obtains

c1,4(x)= c1,4

∣∣∣
Dk,δ(1−x)

−
16

3
C4

F L 7
x +

{
232

3
C4

F +
28

3
C3

F β0

}
L 6

x

−

{
[188 − 128 ζ2]C

4
F + [12 − 48 ζ2]C

3
F CA +

1460

9
C3

F β0 +
16

3
C2

F β 2
0

}
L 5

x

+ O(L 4
x ) , (5.17)

where we have used the abbreviations

Dn ≡ [(1−x)−1 lnn (1−x)]+ and Lx ≡ ln (1−x) .
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The coefficients of C4
F L 7

x , C3
F β0 L 6

x and C2
F β 2

0 L 5
x in eq. (5.17) are the negative of those

of the corresponding +-distributions given (in terms of CF , CA and nf ) in eqs. (5.4)–(5.6)

of ref. [12]. Hence the general pattern noted below eq. (3.4) is part of the present expo-

nentiation and predicted to persist to higher orders. The corresponding result for F2 can

be written as

c2,4(x)= c1,4(x) +
16

3
C4

F L 6
x

+

{
[72 − 64 ζ2]C

4
F − 32 [1 − ζ2]C

3
F CA −

40

3
C3

F β0

}
L 5

x + O(L 4
x ) . (5.18)

This result, obtained from the subleading terms of the physical kernels of F1 and F2, is

consistent with eq. (16) (which also provides the coefficient of L 4
x ) of ref. [34], derived

from the leading large-x physical kernel of the longitudinal structure function FL. This

agreement provides a rather non-trivial confirmation of our approach.

Although it is not fully known at present, it is instructive to consider also the fourth

tower of logarithms. The corresponding generalization of eq. (16) of [51] to the present

case (5.1) reads

d
(n)
a, 2n−4 = d11

{
θn3 hn−3

11

(n − 3)!
h

(1)
a,3 +

θn4 hn−4
11

(n − 4)!

(
h23 + h22h21 +

1

6
h 3

21

)
+

θn7 hn−7
11

6(n − 7)!
h 3

12

+
θn5h

n−5
11

(n−5)!

(
h14+h13h21+h12h22+

1

2
h12h

2
21

)
+

θn6h
n−6
11

(n−6)!

(
h13h12+

1

2
h 2

12h21

)}

+d
(1)
a,0

{
θn3h

n−3
11

(n−3)!

(
h22+

1

2
h 2

21

)
+

θn4 hn−4
11

(n−4)!

(
h13+h12h21

)
+

θn5 g n−5
11

2(n−5)!
h 2

12

}

+ d̃
(2)

a,1

{
θn3 hn−3

11

(n − 3)!
h21 +

θn4 hn−4
11

(n − 4)!
h12

}
+ d

(2)
a,0

θn2 hn−2
11

(n − 2)!
. (5.19)

The additional second- and third-order coefficients in eq. (5.19) are

d
(2)
1,0 = − C2

F

(
295

4
+ 7 ζ2 − 12 ζ3 −

23

2
γe + 4 ζ2 γe − 31 γ 2

e − 4 γ 3
e

)

+CF CA

(
12419

108
−

35

3
ζ2 − 20 ζ3 +

781

18
γe − 4 ζ2 γe +

11

3
γ 2
e

)

−CF nf

(
1243

54
−

2

3
ζ2 +

83

9
γe +

2

3
γ 2
e

)
, (5.20)

d
(2)
2,0 = − C2

F

(
431

4
+ 47 ζ2 − 60 ζ3 +

49

2
γe − 28 ζ2 γe − 39 γ 2

e − 4 γ 3
e

)

+CF CA

(
17579

108
+

13

3
ζ2 − 44 ζ3 +

1333

18
γe − 20 ζ2 γe +

11

3
γ 2
e

)

−CF nf

(
1699

54
−

2

3
ζ2 +

107

9
γe +

2

3
γ 2
e

)
(5.21)

and

h
(1)
1,3 = g31 + C2

F

(
160 −

88

3
ζ2 − 36 γe

)
− CF β0

(
116

9
+ 2 ζ2 −

34

9
γe

)
+ β 2

0

(
51

16
+

5

12
γe

)
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+(CA−2CF )

{
CF

(
211

6
−

44

3
ζ2

)
+ CA

(
13

3
−

5

3
ζ2

)
− β0

(
11

6
+ ζ2

)}
, (5.22)

h
(1)
2,3 = h

(1)
1,3 + 136C2

F −
160

9
CF β0 +

5

6
β 2

0

−(CA−2CF )
{

(80CF − 8β0)(1 − ζ2) + 16 (CA−2CF )(ζ3 − ζ2)
}

(5.23)

with g31 given in eq. (4.9). Thus, in contrast to eqs. (5.10) and (5.11), the NNLL resum-

mation functions ha,3 are not the same for a = 1 and a = 2, and the deviation of their

leading coefficient from g31 involves ζ-functions, including ζ3 in the case of F2.

The only other new coefficient entering eq. (5.19) at order α 4
s is h23. This quantity can

be constrained, but not completely fixed, from the rather obvious extension of eqs. (5.2)

for the (a-independent) leading 1/N behaviour of the physical kernel to the next order,

K a,4

∣∣∣
N−1L4

= − 2β 4
0 CF − ξDIS4

β 3
0 C2

F . (5.24)

The first term on the right-hand-side is fixed by the all-order leading-nf result for Ca [36].

Moreover the all-x expressions (3.26) strongly suggest that terms with a lower power of β0

only contribute to K a,4(N) at higher orders in 1/N . The consistency of eqs. (5.19)–(5.24)

then requires

h23 = g23 +
1

8
β 3

0 +

(
ξDIS4

8
−

53

18

)
β 2

0 CF −
34

3
β0 C2

F + 72C3
F . (5.25)

As implied by the notation used above, also this coefficient of the NLL resummation func-

tion is the same for all structure functions (2.1). The missing information for ξDIS4
is a

next-to-leading large-nf contribution to the fourth-order coefficient function. Since the

leading large-nf terms were derived more than ten years ago, and enormous calculational

progress has been made in this time, an extension to the next order in nf should be feasi-

ble in the near future. We will comment on relations between the rational coefficients in

eqs. (5.10), (5.11) and (5.25) below eq. (6.21).

The resulting next contribution to eq. (5.17) reads (recall Lx ≡ ln (1−x))

c1,4

∣∣∣
L4

x

=−C4
F

(
1270

3
+ 1424 ζ2 +

400

3
ζ3

)
+ C3

F CA

(
1576

9
−

1312

3
ζ2 − 400 ζ3

)

+C3
F β0

(
7583

9
−

520

3
ζ2

)
− C2

F C2
A

(
46

3
+

20

3
ζ2

)
+ C2

F CAβ0

(
70

3
− 40 ζ2

)

+C2
F β 2

0

(
ξDIS4

4
+

277

3

)
+ CF β 3

0 . (5.26)

As expected, the coefficient of CF β 3
0 is the negative of the corresponding coefficient in

eqs. (5.7) of ref. [12]. The presumed a-independence of ξDIS4
leads to a definite prediction

for the ln 4(1−x) term of the fourth-order longitudinal structure function,

c2,4

∣∣∣
L4

x

= c1,4

∣∣∣
L4

x

+ C4
F (32 ζ2 − 160 ζ3) − C3

F CA (8 + 224 ζ2 − 208 ζ3) + 12C2
F β 2

0

−C3
F β0

(
80 −

352

3
ζ2

)
+ 64C2

F C2
A(ζ2 − ζ3) +

176

3
C2

F CAβ0(1 − ζ2) . (5.27)
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This result completes the independent re-derivation of eq. (16) in ref. [34].

The vanishing of the double-logarithmic N−1 ln 6 N contribution to K a,5(N) fixes the

final coefficient in eq. (5.19),

h14 =
1

5
CF β 3

0 = g14 (5.28)

where the second equality refers to eq. (4.4). Thus, up to the presently unknown number

ξDIS4
, the four highest 1/N (or (1−x)0 ) logarithms for the structure functions (2.1) are

fixed to all orders in αs. Moreover it appears obvious from eqs. (5.9) and (5.28) that

h1(asL) is identical to its soft-gluon counterpart g1(asL).

Instead of working out the corresponding all-order N -space formalism at the next

power(s) in 1/N , we close this section on deep-inelastic scattering by presenting the fourth-

order extension of eqs. (3.6)–(3.14), recall the last paragraph of section 3 :

c1,4(x) =
(
ln 7 (1−x) 8/3 C4

F − ln 6 (1−x) 14/3 C3
F β0 + ln 5 (1−x) 8/3 C2

F β 2
0

)
pqq(x)

+ ln 6 (1−x)
[
C4

F {pqq(x) (−14 − 68/3 H0) + 4 + 8H0 − (1−x)(6 + 4H0)}
]

+ ln 5 (1−x)
[
C4

F

{
pqq(x) (−9 − 8 H̃1,0 + 448/3 H0,0 + 84H0 − 64 ζ2) + 48 H̃1,0

−22 − 96H0,0 − 104H0 − (1−x)(13 + 24 H̃1,0 − 48H0,0 − 84H0 − 16 ζ2)
}

+ C3
F β0 {pqq(x) (41 + 316/9H0) − 10 − 32/3 H0 + (1−x)(41/3 + 16/3 H0)}

+ C3
F CA

{
pqq(x) (16 + 8 H̃1,0 + 8H0,0 − 24 ζ2) + 4 + (1−x)(28 − 8 ζ2)

}

+ C3
F (CA − 2CF ) pqq(−x) (16 H̃−1,0 − 8H0,0)

]

+O
(
ln 4(1−x)

)
, (5.29)

c2,4(x) = c1,4(x) + ln 6 (1−x) 16/3 x C4
F

+ ln 5 (1−x)
[
C4

F{16−x (8+48H0)}−40/3x C3
F β0−C3

F (CA−2CF ) 32x (1−ζ2)
]

+ ln 4 (1−x)

[
C4

F

{
8 − 80H0 − (24 + 48 H̃1,0 − 288H0,0 − 48H0 + 160 ζ2) x

}

− C3
F β0 {112/3 − (224/3 + 104H0) x} + C2

F β 2
0 12x

+ C3
F (CA−2CF )

{
−64/(5x 2) (H̃−1,0 − ζ2/2) − 64/(5x) (1 − H0) − 304/5

−64 H̃−1,0 − 32/5 H0 + 96 ζ2 + x (424/5 + 32 [2 H̃−1,−1,0 − H̃−1,0,0

+H̃1,0,0 − H̃−1,0 + H0,0] + 1168/5H0 − 80 ζ2 − 192 ζ2 H0 − 48 ζ3)

−96/5 x 2(1 + H0) + 96/5 x 3(H̃−1,0 − H0,0 + ζ2/2)
}

+C2
F (CA−2CF )β0 176/3 x (1 − ζ2) + C2

F (CA−2CF )2 64x (ζ2 − ζ3)

]

+O
(
ln 3(1−x)

)
, (5.30)

c3,4(x) = c1,4(x) − ln 6 (1−x) 8/3 C4
F (1−x)

+ ln 5 (1−x)
[
C4

F {−64H0 + (1−x)(36 + 56H0 − 32 ζ2)}

+20/3 C3
F β0 (1−x) + C3

F CA {32H0 − 16 (1−x)(1 + H0 − ζ2)}
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−C3
F (CA − 2CF ) 16 pqq(−x) (2 H̃−1,0 − H0,0)

]

+O
(
ln 4(1−x)

)
. (5.31)

The ln 4(1−x) contribution to c1,4 involves two unknown coefficients of Ka,4(x), see

eqs. (3.26) and (5.24). The corresponding terms in eq. (5.31) can be predicted completely.

However, as C3 −C1 does not correspond to an observable, we have refrained from writing

them down here.

6 Results for fragmentation and the Drell-Yan process

As discussed above, the subleading large-x / large-N structure of the coefficient functions

for the fragmentation functions (2.10) in semi-inclusive e+e− annihilation (SIA) is com-

pletely analogous to that of their DIS counterparts addressed in the previous section. Con-

sequently the notation (5.1) can be used for the present 1/N coefficients as well. Also these

contributions can be resummed in the form (5.6), with the first four towers of logarithms

given by eqs. (5.3)–(5.8) and (5.19).

The coefficient functions CT and CA are identical up to terms of order 1/N2 or (1−x) ,

cf. eqs. (3.21)–(3.23) above. The leading 1/N logarithms of the physical kernels (2.8) are the

same for all three fragmentation functions FI ≡ FT +FL , FT and FA (recall L ≡ lnN ),

K a,1

∣∣∣
N−1L

= − 2β0 CF + 16C2
F ,

K a,2

∣∣∣
N−1L2

= − 2β2
0 CF + 24β0 C2

F ,

K a,3

∣∣∣
N−1L3

= − 2β3
0 CF +

88

3
β2

0 C2
F ,

K a,4

∣∣∣
N−1L4

= − 2β 4
0 CF + ξSIA4

β 3
0 C2

F . (6.1)

The first three lines derive from eq. (3.26). These results are identical to eqs. (5.2) for

the DIS kernels except for the different sign of the non-leading large-nf terms. The close

relation between the SIA and DIS cases suggests ξSIA4
= ξDIS4

for the fourth-order gener-

alization in the final line corresponding to eq. (5.24).

The expansion coefficients of the LL and NLL contributions to the resummation ex-

ponential (5.6), fixed by eqs. (6.1) and the vanishing of higher than single-logarithmic

contributions, read

h1k = g1k for k = 1, . . . , 4 , (6.2)

h21 = g21 +
1

2
β0 − 6CF , (6.3)

h22 = g22 +
5

24
β2

0 −
17

9
β0 CF − 18C2

F , (6.4)

h23 = g23 +
1

8
β 3

0 +

(
53

18
−

ξSIA4

8

)
β 2

0 CF −
34

3
β0 C2

F − 72C3
F . (6.5)

The coefficients (6.3)–(6.5) differ from their DIS counterparts (5.10), (5.11) and (5.25) only

by the signs of every second term in the expansion in powers of β0. The first coefficients
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of the NNLL resummation function ha,3 (defined as g3 in eq. (4.1)), on the other hand, are

neither the same for the coefficient functions CT, A and CI , the SIA analogue of C2 , nor do

they show a close relation to their DIS counterparts (5.22) and (5.23). These coefficients are

h
(1)
T,3 = g31 − C2

F

(
240 −

88

3
ζ2 + 36 γe

)
− CF β0

(
139

9
+ 2 ζ2 +

34

9
γe

)
− β 2

0

(
9

16
−

5

12
γe

)

− (CA−2CF )

{
CF

(
1

6
−

44

3
ζ2

)
+ CA

(
34

3
−

5

3
ζ2

)
− β0

(
49

6
− ζ2

)}
, (6.6)

h
(1)
I,3 = h

(1)
T,3 + 20C2

F +
8

9
CF β0 +

5

12
β 2

0

+ (CA−2CF )
{

(8CF + 4β0)(1 − ζ2) − 8 (CA−2CF )(ζ3 − ζ2)
}

. (6.7)

Finally the required coefficients of the prefactors of the exponential, again obtained by

expanding eq. (5.6) in powers of αs and comparing to the results in section 3, are given by

d11 = 2CF (6.8)

for both coefficient functions, the same result as in eq. (5.12) for the DIS case,

d
(1)
T,0 = −

23

2
CF + 2 γe CF (6.9)

d̃
(2)

T,1 = − C2
F

(
97 − 20 ζ2 + 6 γe − 4 γ 2

e

)
+ CF CA

(
665

36
− 4 ζ2 +

11

3
γe

)

− CF nf

(
19

18
+

2

3
γe

)
(6.10)

d
(2)
T,0 = C2

F

(
481

4
− 157 ζ2 + 12 ζ3 −

125

2
γe + 20 ζ2 γe − 29 γ 2

e + 4 γ 3
e

)

− CF CA

(
9325

108
−

37

3
ζ2 + 20 ζ3 +

47

18
γe + 4 ζ2 γe −

11

3
γ 2
e

)

+ CF nf

(
989

54
+

2

3
ζ2 +

25

9
γe −

2

3
γ 2
e

)
(6.11)

and

d
(1)
I,0 = −

19

2
CF + 2 γe CF (6.12)

d̃
(2)

I,1 = − C2
F

(
109 − 36 ζ2 + 6 γe − 4 γ 2

e

)
+ CF CA

(
1085

36
− 12 ζ2 +

11

3
γe

)

− CF nf

(
31

18
+

2

3
γe

)
(6.13)

d
(2)
I,0 = C2

F

(
413

4
− 153 ζ2 + 36 ζ3 −

161

2
γe + 36 ζ2 γe − 25 γ 2

e + 4 γ 3
e

)

− CF CA

(
6745

108
−

61

3
ζ2 + 32 ζ3 −

229

18
γe + 12 ζ2 γe −

11

3
γ 2
e

)

+ CF nf

(
761

54
+

2

3
ζ2 +

13

9
γe −

2

3
γ 2
e

)
. (6.14)
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Except for the coefficients with ζ3 (and some obvious terms with γe) there is no direct

relation either between eqs. (6.9)–(6.14) and their DIS counterparts (5.12)–(5.16), (5.20)

and (5.21).

Inserting eqs. (6.2)–(6.14) into eqs. (5.3)–(5.8) and (5.19) we arrive at explicit pre-

dictions for the coefficients of the four highest 1/N logarithms to all orders in αs, with

the fourth logarithm including the unknown coefficient ξSIA4
of eq. (6.5). After Mellin

inversion back to x-space the fourth-order result for FT (and FA, see above) read

cT,4(x)= cT,4

∣∣∣
Dk,δ(1−x)

−
16

3
C4

F L 7
x +

{
16

3
C4

F +
28

3
C3

F β0

}
L 6

x

+

{
[104 + 32 ζ2]C

4
F − [52 − 48 ζ2]C

3
F CA −

424

9
C3

F β0 −
16

3
C2

F β 2
0

}
L 5

x

+

{
C4

F

(
−

44

3
− 272 ζ2 −

400

3
ζ3

)
+ C3

F CA

(
964

9
+

112

3
ζ2 − 400 ζ3

)

−C3
F β0

(
223

9
+

280

3
ζ2

)
− C2

F C2
A

(
78 −

20

3
ζ2

)
+ C2

F CAβ0

(
290

3
− 40 ζ2

)

+C2
F β 2

0

(
115

3
−

ξSIA4

4

)
+ CF β 3

0

}
L 4

x + O(L 3
x ) , (6.15)

where we have again used the abbreviations introduced below eq. (5.17). As for the corre-

sponding +-distributions, see ref. [17], the coefficients of C4
F L 7

x , C3
F β0 L 6

x , C2
F β 2

0 L 5
x and

CF β 3
0 L 4

x in eq. (6.15) are the same as in eqs. (5.17) and (5.26) for the DIS case.

The corresponding predictions for the total fragmentation function FI = FT +FL lead

to the following results for the longitudinal fragmentation function FL:

cL,4(x)=
8

3
C4

F L 6
x +

{
[36 − 32 ζ2]C

4
F − 16 [1 − ζ2]C

3
F CA −

20

3
C3

F β0

}
L 5

x

+

{
C4

F (64 ζ2 − 80 ζ3) − C3
F CA (4 + 112 ζ2 − 104 ζ3) − C3

F β0

(
40 −

176

3
ζ2

)

+ 6C2
F β 2

0 + 32C2
F C2

A(ζ2 − ζ3) +
88

3
C2

F CAβ0(1 − ζ2)

}
L 4

x + O(L 3
x ) . (6.16)

Besides an overall factor of two arising from the different definitions of FL in SIA and DIS,

this expression differs from its counterparts (5.18) and (5.27) for the longitudinal structure

functions in DIS only in the coefficient of ζ2 C4
F ln 4(1−x). Eq. (6.16) can be derived also via

the physical evolution kernel for the longitudinal fragmentation function, in complete anal-

ogy with the DIS case in ref. [34]. In fact, eqs. (20)–(22) of that article hold for the present

case as well, with the above difference arising from the second-order prefactor to the resum-

mation exponential. This close relation between the spacelike and timelike cases does not

persist at higher orders in (1−x), as can be seen already by comparing eqs. (3.9) and (3.18).

We now turn to the corresponding results for the non-singlet Drell-Yan cross sec-

tion (2.11). The leading 1/N contributions to its physical kernel are given by

KDY,1

∣∣∣
N−1L

= − 8β0 CF − 32C2
F ,

– 22 –



J
H
E
P
1
1
(
2
0
0
9
)
0
9
9

KDY,2

∣∣∣
N−1L2

= − 16β2
0 CF − 112β0 C2

F ,

KDY,3

∣∣∣
N−1L3

= − 32β3
0 CF + ξDY3

β2
0 C2

F ,

KDY,4

∣∣∣
N−1L4

= − 64β4
0 CF + ξDY4

β3
0 C2

F . (6.17)

Here the first two lines follow from eqs. (3.27), while the third and the fourth are the

obvious generalization to order α 4
s and α 5

s , respectively, exploiting the complete analogy

to the DIS and SIA cases discussed above. Also these parts of eqs. (6.17) are of some

interest despite the unknown subleading large-β0 terms.

This can be seen from the resulting coefficients of the LL and NLL resummation

exponents,

h1k = g1k for k = 1, . . . , 4 , (6.18)

h21 = g21 + β0 + 7CF , (6.19)

h22 = g22 +
5

6
β2

0 −

(
7 −

ξDY3

24

)
β0 CF −

49

2
C2

F , (6.20)

h23 = g23 + β3
0 −

(
7

3
+

ξDY3

24
−

ξDY4

32

)
β2

0CF −

(
49 −

7 ξDY3

24

)
β0 C2

F +
343

3
C3

F . (6.21)

We note that, both here and in eqs. (5.11) and (5.25) for the structure functions in DIS,

the coefficients of C n
F in h2n are given by 1/n times the n-th power of the corresponding

coefficient in h21. Furthermore the coefficients of β0C
2
F in eqs. (5.25) and (6.21) are the

products of the respective CF and β0CF coefficients in h21 and h22. These relations seem

to point towards a general structure for the functions h2(asL) in eq. (5.6) which, we

hope, can be uncovered in some more deductive approach to the 1/N contributions to the

coefficient functions.

The prefactor coefficients relevant for the highest three logarithms read

d
(1)
DY,1 ≡ d11 = 8CF , d

(1)
DY,0 = 8 γe CF , (6.22)

d̃
(2)

DY,1 = − C2
F

(
156 − 128 ζ2 − 56 γe − 64 γ 2

e

)
+ CF CA

(
884

9
− 16 ζ2 +

88

3
γe

)

− CF nf

(
176

9
+

16

3
γe

)
. (6.23)

Together with eqs. (6.18)–(6.20) these results lead to the third- and fourth-order predictions

cDY,3(x)= cDY,3

∣∣∣
Dk,δ(1−x)

− 512C3
F L 5

x +

{
1728C3

F +
640

3
C2

F β0

}
L 4

x

+

{
[2272 + 3072 ζ2]C

3
F −

[
544

3
− 512 ζ2

]
C2

F CA

−

[
2944

3
+

ξDY3

3

]
C2

F β0 −
64

3
CF β 2

0

}
L 3

x + O(L 2
x ) (6.24)

and

cDY,4(x)= cDY,4

∣∣∣
Dk,δ(1−x)

−
4096

3
C4

F L 7
x +

{
19712

3
C4

F +
3584

3
C3

F β0

}
L 6

x

– 23 –



J
H
E
P
1
1
(
2
0
0
9
)
0
9
9

+

{
[9088 + 20480 ζ2]C

4
F − [1408 − 3072 ζ2]C

3
F CA

−

[
20864

3
+

8 ξDY3

3

]
C3

F β0 −
1024

3
C2

F β 2
0

}
L 5

x + O(L 4
x ) , (6.25)

where the respective third logarithms depend on the presently unknown quantity ξDY3
.

Also in eqs. (6.24) and (6.25) the coefficients of the highest +-distributions and powers of

Lx ≡ ln (1−x) for each colour factor are equal in magnitude but opposite in sign.

Finally we provide the generalizations of eqs. (3.15)–(3.25) to the next order in αs. For

the fragmentation functions (2.10) these are given by

cT,4(x) = c1,4(x) + ln 6(1−x) C4
F {32 pqq(x)H0 − 8 + 4 (1−x)}

+ ln 5 (1−x)
[
C4

F

{
pqq(x) (16 H̃1,0 − 152H0,0 − 108H0 + 48 ζ2)

+44 + 176H0,0 + 24H0 − (1−x)(22 + 88H0,0 + 68H0)
}

+C3
F β0 {−428/9 pqq(x)H0 + 20 − 10 (1−x)}

+C3
F CA

{
pqq(x) (−16 H̃1,0 − 8H0,0) − 8 + 4 (1−x)

}]

+O
(
ln 4(1−x)

)
, (6.26)

cL,4(x) = ln 6 (1−x) 8/3 C4
F

+ ln 5 (1−x)
[
C4

F {−4 + 8H0 + 8x} − 20/3 C3
F β0 − 16C3

F (CA−2CF )(1 − ζ2)
]

+ ln 4 (1−x)

[
C4

F

{
4 − 8 H̃1,0 − 8H0,0 − 4H0 − 32 ζ2 − x (12 − 16H0)

}

+ C3
F β0 {112/3 − 56/3 H0 − 56/3 x}

+ C3
F (CA−2CF )

{
−48/(5x 2) (H̃−1,0 − ζ2/2) − 48/(5x) (1 − H0) + 212/5

−16 [2 H̃−1,−1,0 − H̃−1,0,0 − 2 H̃0,−1,0 − H̃1,0,0 − H̃−1,0] − 184/5 H0 − 40 ζ2

−24 ζ3 + 16 ζ2 H0 + x (−152/5 + 32 H̃−1,0 − 32H0,0 + 16/5H0 + 48 ζ2)

−32/5 x 2(1 + H0) + 32/5 x 3(H̃−1,0 − H0,0 + ζ2/2)
}

+ 6C2
F β 2

0 + C2
F (CA−2CF )β0 88/3 (1 − ζ2) + C2

F (CA−2CF )2 32 (ζ2 − ζ3)

]

+O
(
ln 3(1−x)

)
, (6.27)

cA,4(x) = cT,4(x) − ln 6 (1−x) 8/3 C4
F (1−x)

+ ln 5 (1−x)
[
C4

F {−64H0 + (1−x)(36 + 24H0 − 32 ζ2)}

+ 20/3 C3
F β0 (1−x) + C3

F CA {32H0 − 16 (1−x)(1 + H0 − ζ2)}

− C3
F (CA − 2CF ) 16 pqq(−x) (2 H̃−1,0 − H0,0)

]

+O
(
ln 4(1−x)

)
. (6.28)

The corresponding result for the third-order Drell-Yan coefficient function reads

cDY,3(x) =
(
ln 5 (1−x) 192C3

F − 80 ln 4 (1−x) C2
F β0

)
pqq(x)

+ ln 4 (1−x)
[
C3

F {−648 pqq(x)H0 + 384H0 − 192 (1−x)(2 + H0)}
]

+O
(
ln 3(1−x)

)
. (6.29)
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Unlike eq. (6.17), the fourth-order generalization of eqs. (3.27) involves more than one

unknown coefficient, hence we have not included the incomplete ln 3(1−x) contribution in

eq. (6.29).

7 Numerical illustrations

We close by briefly illustrating the numerical size of the known and new subleading large-N

contributions to the coefficient functions. For nf = 4 the corresponding expansions of the

two- and three-loop coefficient function for F2 , the practically most important structure

function, are given by

c2,2(N) = 3.556L4 + 26.28L3 + 40.76L2 − 67.13L − 157.3

+N −1( 7.111L3 + 92.76L2 + 239.5L + 214.0 ) + O
(
N −2

)
, (7.1)

c2,3(N) = 3.160L6 + 44.92L5 + 238.9L4 + 470.8L3 − 620.2L2 − 1639L − 3586

+N −1( 9.481L5 + 211.9L4 + 1393L3 + 4157L2 + 5200L + 5230 )

+O
(
N −2

)
. (7.2)

In figure 1 these approximations, with and without the 1/N terms, are compared to the

exact results of refs. [23, 24] and [27]. At both orders the latter contributions are relevant

over the full range of N shown in the figure, while terms of order 1/N2 are sizeable only at

N < 5. Note that the classification as N 0 and N −1 terms does not reflect the numerical

behaviour for the N -values of the figure. E.g., the third-order increase due to the ln k N

contributions in the first line of eq. (7.1) strongly resembles a linear rise, and the sum of

the N −1 ln kN terms in the second line almost looks like a constant. In fact, the decrease

of this contribution towards large N is very slow: only at N = 1.5 · 10 2 has it fallen to half

of the value at its maximum at N = 6.6. The situation for the corresponding third-order

coefficient functions for F1 and F3 [28], not shown here for brevity, is similar except at

small N where in both cases the sum of the N 0 and N −1 terms is close to the exact result

even down to N = 1, the lowest value of N used in the figures.

The pattern of the coefficients is rather different for both the N 0 and N −1 con-

tributions to the corresponding coefficient functions for the transverse fragmentation

function FT ,

cT,2(N) = 3.556L4 + 25.69L3 + 105.6L2 + 104.3L

+N −1( 7.111L4 − 29.02L4 − 111.4L − 504.0 ) + O
(
N −2

)
, (7.3)

cT,3(N) = 3.160L6 + 43.34L5 + 309.3L4 + 1017L3 + 2306L2 + 2090L + 9332

+ N −1( 9.481L5 − 10.17L4 − 362.7L3 − 3247L2 ) + O
(
N −1 L

)
. (7.4)

These expansions are shown in figure 2 together with the exact second-order result of

refs. [29, 30]. As adequate for an observable measured in particular at scales not too far

from the Z-mass, the results refer to nf = 5 effectively light flavours. All N 0 contributions

are positive in eqs. (7.3) and (7.4), yielding a larger soft-gluon enhancement than in the

DIS case especially due to the lower powers of ln N as already discussed in ref. [17]. On
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Figure 1. The second- and third-order non-singlet coefficient functions for the structure function

F2 as defined in eq. (2.2) in Mellin-N space. The leading and subleading large-N contributions (7.1)

and (7.2) are compared to the exact functions for nf = 4 light flavours. The results are multiplied

by suitable factors compensating our small choice as = αs/(4π) of the expansion parameter.

the other hand, the N −1 ln kN coefficients change sign here, again in contrast to eqs. (7.1)

and (7.2). This leads to smaller and negative 1/N corrections which do not exceed 10%

except for N < 7 in the two-loop case in the left part of the figure, where their inclusion

results in a good approximation down to N ≃ 2. At the third order the N −1 ln N and N −1

contributions are not yet known. One may expect similarly relevant small-N corrections

from these terms to the corresponding curve shown in the right part of the figure. Similar

results are found for the integrated and asymmetric fragmentation functions.

We now turn to the four-loop predictions derived in the previous two sections, again

focusing on the same two DIS and SIA observables. The known and new contributions at

this order read

c2,4(N)=2.107L8 + 48.71L7 + 477.9L6 + 2429L5 + 5240L4 − 1824L3 − 30308L2

+ O (L) + N −1( 8.428L7 + 284.3L6 + 3324L5 + [18884 + 30.86 ξDIS4
]L4)

+ O
(
N −1L3

)
(7.5)

and

cT,4(N)=2.107L8 + 46.60L7 + 514.1L6 + 3126L5 + 11774L4 + 23741L3 + 46637L2

+ O (L) + N −1( 8.428L7 + 32.47L6 − 448.1L5 − [7315 + 26.12 ξSIA4
]L4)
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Figure 2. As figure 1, but for the fragmentation function FT at nf = 5. Neither the exact

three-loop result nor the corresponding coefficients of the N −1 ln N and N −1 terms are known at

present.

+ O
(
N −1L3

)
. (7.6)

As above, the results for F2 in eq. (7.5) are given for nf = 4, and those for FT in eq. (7.6)

for nf = 5. The N 0 coefficients have been presented already in tables 1 of refs. [12, 17].

The ln 2 N term in both equations includes a small contribution A4/2 from the fourth-order

cusp anomalous dimension for which we have used the respective Padé estimates of 4310 for

nf = 4 and 1550 for nf = 5 [12]. The fourth N −1 logarithms receive small contributions

from the presently unknown (and most likely identical) fourth-order coefficients ξDIS4
and

ξSIA4
of eqs. (5.24) and (6.1). Values expected from the latter equations contribute less

than 2% to the coefficients of N −1 ln 4 N .

The presently unknown lower-k N −1 ln k N terms can be expected to enhance the

1/N effects shown in figure 3. Yet already now one can conclude that the pattern of the

previous two orders appears to persist to order α 4
s , e.g., that the N −1 contributions are

small for FT at least at N & 10. We stress that this figure does not intend to present the

best approximation to dominant N 0 contributions, but simply illustrates the effect of the

known terms as given in eqs. (7.5) and (7.6). Rough estimates of the missing coefficient of

ln N can be obtained by expanding the soft-gluon exponential (4.1) or (also for the non-

logarithmic N 0 terms) via the Mellin transform of the known seven +-distributions given

in eqs. (5.4)–(5.10) of ref. [12] — note that there are some typos in the first archive and

journal versions of this article — and in eq. (32) of ref. [17]. The latter article includes also
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Figure 3. Large-N contributions to the fourth-order non-singlet coefficient functions for F2 in DIS

(left) and FT in SIA (right). Shown are the known N 0 and N −1 contributions as given in eqs. (7.5)

and eqs. (7.6). The results have been multiplied by 25000 ≃ (4π)4 for display purposes.

the c2,4 − cT,4 difference of the ln N and N 0 coefficients in eqs. (7.5) and (7.6).

Finally the large-N expansion of the second- and third-order coefficient functions for

the non-singlet (quark-antiquark annihilation) Drell-Yan cross section (2.11) are given by

c2,2(N) = 56.89L4 + 185.9L3 + 428.6L2 + 267.6L + 442.8

+ N −1( 113.8L3 + 378.4L2 + 577.3L + 53.43 ) + O
(
N −2

)
, (7.7)

c2,3(N) = 202.3L6 + 1282L5 + 4676L4 + 8172L3 + 11404L2 + 6395L + O (1)

+ N −1( 606.8L5 + 4267L4 + [12164 − 4.543 ξDY3
]L3) + O

(
N −1L2

)
(7.8)

for nf = 5. These expansions are shown in figure 4 together with the exact two-loop results

of refs. [31, 32]. The higher-order corrections are much larger in this case than in DIS and

SIA. Also here the 1/N contributions appear to be numerically rather unimportant, a fea-

ture that appears to persists to even lower values of N than for the fragmentation functions.

8 Summary and outlook

We have analysed the ln k(1−x) contributions to the physical evolution kernels for — in-

cluding the results already presented in ref. [34] — nine flavour non-singlet observables in

inclusive DIS, semi-inclusive e+e− annihilation (SIA) and Drell-Yan lepton-pair production.

It turns out that all these kernels include only single-logarithmic higher-order corrections,
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Figure 4. As figure 2, but for Drell-Yan cross section (2.11), using the expansions (7.7) and (7.8)

with ξDY3
= − 400. Besides the coefficients mentioned in the caption of that figure, also the

third-order constant-N and N −1 ln 2 N coefficient are unknown in this case.

up to αn
s (1−x)k lnn−1(1−x), at all powers k of (1−x). On the other hand, the coefficient

functions from which these kernels are constructed received double-logarithmic contribu-

tions up to αn
s (1−x)k ln 2n−1(1−x) at all orders. This difference implies that the terms

αn
s (1−x)k ln l(1−x) with n ≤ l < 2n are functions of lower-order terms, i.e., a general

resummation of the double-logarithmic terms at all powers of (1−x).

The above pattern is established to all orders in αs by the soft-gluon exponentiation of

the (1−x)−1 ln k(1−x) contributions to the coefficient functions [11–17]. All-order results

underpinning it at all powers in (1−x) are presently known only for the leading large-nf

contributions to DIS structure functions [35, 36]. However, all available fixed-order results

on higher-order coefficient functions [23–32] are consistent with the behaviour described in

the previous paragraph.

In our view it is most unlikely that this consistency is accidental, given the large

number of observables and the depth of the perturbative expansion reached especially in

DIS and SIA — for the latter this article includes some new third-order results. Moreover

it should be noted that the resummation of FL in both DIS and SIA can be consistently

constructed each via two different physical kernels: that for these quantities themselves

(starting with (1−x)−1 ) and via the difference (starting with (1−x)0 ) of the respective

kernels, K2−K1 and KI −KT , for the structure functions F1,2 and fragmentation functions

FT,I where FI is our notation for the total (angle-integrated) fragmentation function. We
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thus definitely expect that we are observing a genuine feature of the coefficient functions

and expect that a more deductive approach, such as that pursued in ref. [19], can provide

a formal proof in the near future at least for the next power in (1−x).

We have employed the conjectured single-logarithmic enhancement of the physical

kernels to derive the explicit x-dependence of the coefficients of the three highest powers

of the fourth-order DIS and SIA coefficient functions, while in the Drell-Yan case we are

restricted to two logarithms at order α 3
s . For this purpose we have employed a modified

basis (required far beyond the weight-3 functions shown in the article) for the harmonic

polylogarithms. An extension of these results to higher orders in αs is possible but not

necessary at present in view of the discussion given below.

For the subdominant (except for FL) logarithms with prefactor (1−x)0 we have cast

our results in the form of an exponentiation, akin to that of the (1−x)−1 soft-gluon effects,

in Mellin-N space where these terms behave as N−1 ln k N . One more logarithm can be

effectively predicted in this case, as the one unknown parameter turns out to be numerically

suppressed. Our resummation of the 1/N terms is, nevertheless, far less predictive than

the soft-gluon exponentiation (which predicts seven of eight fourth-order logarithms in DIS

and SIA) for two main reasons: Firstly the prefactor of the exponential is of first instead

of zeroth order in αs, thus one more order needs to be calculated in order to fix the same

number of coefficients. Secondly, while the leading-logarithmic function, usually denoted

by g1(αs ln N), in the exponent is the same as in the N 0 soft-gluon case, this does not hold

for the higher-logarithmic functions which have an (at least presently) not fully predictable

power expansion (from g2 ) and do not show any universality (from g3 ).

Finally we have illustrated the numerical size of the 1/N contributions. It turns out

that, in the restricted N -region of practical interest, the logarithms at the third and higher

orders essentially compensate one power of N , i.e., the N 0 terms together resemble a linear

increase with N , and 1/N corrections almost look like a constant. The sum of all N 0 and

N−1 contributions is found to provide an excellent approximation of the exact results,

except at small N -values such as N . 5, wherever both are known. However, only in the

DIS case do the 1/N terms constitute a phenomelogically significant correction over a wide

range of moments.

The main application of the present results and, hopefully, their future extensions in

a more deductive approach — we note that also an extension of ref. [36] to the next-to-

leading large-nf terms would provide very useful information in the present context — may

be in connection with future higher-order diagram calculations, e.g., of the fourth-order DIS

coefficient functions: Firstly they can serve as important checks of such computations which

will be of unprecedented complexity. Secondly, they will be very useful in combination

with future partial results such as a fourth-order extension of the fixed-N calculations

of refs. [54], as fewer computationally costly moments will be required for useful x-space

approximations along the lines of, e.g., ref. [21].
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